Insular cortex processes aversive somatosensory information and is crucial for threat learning

Learning about threats is essential for survival. During threat learning, an innocuous sensory percept such as a tone acquires an emotional meaning when paired with an aversive stimulus such as a mild footshock. The amygdala is critical for threat memory formation, but little is known about upstream brain areas that process aversive somatosensory information. Using optogenetic techniques in mice, we found that silencing of the posterior insula during footshock reduced acute fear behavior and impaired 1-day threat memory. Insular cortex neurons respond to footshocks, acquire responses to tones during threat learning, and project to distinct amygdala divisions to drive acute … Continue reading Insular cortex processes aversive somatosensory information and is crucial for threat learning

Brainstem nucleus incertus controls contextual memory formation

Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that -aminobutyric acid (GABA)–releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can … Continue reading Brainstem nucleus incertus controls contextual memory formation